Basin Planning and Environmental Flows in China

Robert Speed

Robert.speed@okeanos.com.au

Delhi, 5 February 2015

Overview

- 1. Intro to water resources issues in China
- 2. Master basin planning
- 3. E-flows case study: Yellow River
- 4. E-flows case Study: Yangtze River

Overview

- 1. Intro to water resources issues in China
- 2. Master basin planning
- 3. E-flows case study: Yellow River
- 4. E-flows case Study: Yangtze River

The context

- Annual water resources 2.8 trillion m³
- Rainfall from 150mm to 2,000mm /yr
- 1,500 basins of >1,000 km²
- Uneven distribution of water resources
- Per capita water resources 28% of world average
- Total water with drawls of 585 billion m³ (20% of total renewable resource)

Water management in China

- Central, hierarchical system
- Central government sets national water policy
- 7 basin authorities, responsible for planning and oversight
- Provincial, prefecture and county governments with various responsibilities
- 2002 Water Law provides planning and licensing system

Challenges

- Water shortages
- Pollution and water quality
- Flooding

Key responses

- No. 1 Policy document "The Decision on Accelerating the Reform and Development of Water Conservancy" – and US\$600 billion investment
- Master basin plans approved by State Council March 2013 for seven major river basins
 - Flood and drought prevention includes objectives around both reducing flood risk and protecting ecosystems
 - Reasonable water allocation and efficient use
 - Water conservation and river health security
 - Institutional arrangements for water science
- Plans to be developed for 232 mid-sized basins
- Adoption of 'Three Red Lines' limits on abstraction and pollution loads, and minimum efficiency standards

Recognition of environmental flows

- 2002 Water Law
 - Acknowledgement of requirement for water for the "ecological environment"
- 11th 5-year plan
 - "Building a Resource-Conserving and Environment-Friendly Society"
- Revision of Master Basin Plans
 - Recognition of environmental flows in plans for first time
- "Red-line" for water consumption

Overview

- 1. Intro to water resources issues in China
- 2. Master basin planning
- 3. E-flows case study: Yellow River
- 4. E-flows case Study: Yangtze River

Three phases of Basin Master Plans

Drivers

- Extent of regulation of river systems
- Change in economic and social situation
- Change in physical condition of the basin
- Changes in objectives for the basin and management arrangements

A new approach

- Water planning vs. socio-economic and environmental planning
- Engineering vs. resource management
- Water resources development vs. water resources protection
- Spatial and segmented vs. strategic and integrated

Manage trade-offs between:

- Human and nature
- Development and protection
- Regions and the river basin
- Engineering and management

	Technical water resources planning	Strategic basin planning	
Extent of basin	Basins with 'spare' water available for	Complex or water-stressed basins	
development	development and not facing significant	requiring difficult tradeoffs between	
	environmental pressures	economic, social and ecological objectives	
Issues of concern	Responding to identified water resources	Responding to broader basin stress and	
	pressures	socio-economic pressures	
Purpose of basin	Reconciliation of water availability or	Water planning as an integral part of	
planning	quality with existing development goals:	development planning:	
	"water for the economy"	"water in the economy"	
Objective	Development	Protection and management	
Focus of attention	Water focused: water resources	Society focused: economic, social and	
	infrastructure systems	environmental systems supported by the	
		river	
Environmental	Threshold levels, in particular water	Maintenance of ecosystem goods and	
requirements	quality	services	
Key skills in the	Water planner led, with a focus on	Co-operation between development,	
planning process	engineering skills	water and environment planners	
Analysis	"Technical optimisation"	"Economic and environmental scenarios"	
techniques	WR infrastructure systems analysis	 Integrated WR systems analysis 	
	Economic cost-benefit analysis	Social / economic analysis of water	
	Water quality assessment	Strategic environmental assessment	
	Future water use projections	Scenario planning	

Alignment of water plans with other sectoral plans

Assessment and approach Priority issues and principles Vision and objectives Basin Plan Implementation Source: Pegram et al. 2013

Strategic environmental (basin) planning

River Basin Plan

Goals / Vision

Protection

Strategic objective

and action

Strategic objective

and action

Development

Strategic objective and action

Strategic objective

and action

Disaster Risk

Institutional

Strategic objective and action

Strategic objective

and action

Strategic objective

and action

Strategic objective and action

Strategic objective and action

Strategic objective and action

Thematic plans

Water supply and irrigation

Water quality management

River and estuary protection

Wetland and lake ecology

Implementation/Detailed Planning

Financial mechanisms

Strategic objective

and action

Institutional coordination Stakeholder engagement

Monitoring and information

Disaster/drought response

Waterlogging control

Navigation

Flood risk management

Hydropowe

Water use efficiency

Water allocation

Groundwater protection

Riparian and coastline

Strategic objective

Basin planning: lessons from China

- The importance of strategic basin planning as the issues in a basin become more complex
- Criticality of understanding of the role of water in the economy
- Recognition of linkage between basin function/condition and ecosystem services
- Understand the trade-offs

Overview

- 1. Intro to water resources issues in China
- 2. Master basin planning
- 3. E-flows case study: Yellow River
- 4. E-flows case Study: Yangtze River

Yellow River flows 1956-2000

Management challenges in the Yellow River Basin

Floods

Water pollution

Water Scarcity

Soil Erosion/Sediment

Increased flood risk

Sediment deposition = raised river bed = high flood risk

Determining e-flow requirements

- Focus on sediment transport
- Identified needs to deal with 1 billion tons/yr
 - 400 million to be captured
 - 100 million to deposit in lower reach
 - 500 million to be flushed
- Flushing requirement of 21 billion m³
- Includes a continuous minimum flow of 5 billion m³ near the mouth during the non-flood period

1987 Water Allocation Scheme for the Yellow River

Province/ region	Water for agriculture (million m³)	Water for other purposes (million m ³)	Total (million m³)
Qinghai	1,161	249	1,410
Sichuan	40	0	40
Gansu	2,580	460	3,040
Ningxia	3,888	112	4,000
Inner Mongolia	5,251	609	5,860
Shaanxi	3,317	483	3,800
Shanxi	2,911	1,399	4,310
Henan	4,669	871	5,540
Shandong	5,324	1,676	7,000
Tianjin	0	2,000	2,000
Reserved for sediment flushing		21,000	21,000
Total	29,141	28,859	58,000

Annual regulation plan

- Regulates period November to June (non-flood period)
- Prepared annually in consultation with provincial departments
- Includes:
 - Maximum monthly abstraction and consumption for each province/region
 - Reservoir releases
 - Required flows at provincial boundaries
- During peak periods, refined every 10 days

E-Flows in Yellow River Steps to implementation

- 1. Recognise the problem
- 2. Identify a clear objective
- 3. Where possible, provide a scientific basis to support decision-making
- 4. Incorporate the flow requirements within the allocation and management system
- 5. Allow flexibility for water dependent industries within the confines of a capped system
- 6. Continue to improve the system as information becomes available

Lessons from the Yellow River

- Natural capital plays a critical role in supporting water security
- E-flows assessments and objectives need to be customised to meet the local situation

Overview

- 1. Intro to water resources issues in China
- 2. Master basin planning
- 3. E-flows case study: Yellow River
- 4. E-flows case Study: Yangtze River

Development of the Yangtze Basin

- Storage capacity of 360 billion m³, or 36.7% of annual average surface water resources
- 72 large hydropower station
- Total installed capacity of 1.2 trillion KW.

Impacts of changes to the flow regime

- Reduced sediment movement and consequences for connected lakes
- Collapse of fish fry for four major species of carp (95% reduction)
- Water quality issues and algal blooms on Tai Lake
- Saltwater intrusion in Yangtze estuary

Monitoring and adaption

- Recognition of:
 - High cost of changes to flow regime due to development
 - High cost of provision of eflows
- Implementation of extensive monitoring program to assess:
 - Impact of eflow trials
 - Impacts on Poyang and Dongting Lakes
 - Related ecosystem restoration works

Lessons from Yangtze

- Wide range of adverse impacts that can result from water resources development
- Importance of information to support rational decision-making and trade-offs

Final thoughts:

- While science and economics can inform planning and allocation decisions, these are ultimately socio-political decisions
- Such decisions should be made in a deliberate, transparent way, based on the best available science, and understanding the consequences